

Reinforcing civil protection capabilities into multi-hazard risk assessment under climate change

Needs of civil protection and emergency management

David Pagès and Núria Gasulla

Generality of Catalonia
General Directorate of Civil Protection

11/11/2020

* * * * * * * * Funded by European Union Humanitarian Aid and Civil Protection

Objectives

Identify gaps and operational data requirements to be considered during risk assessment and planning process

Enhance civil protection capabilities in an integrated preventionpreparedness-response approach and cost-efficient risk management.

Methodology – 1st step

Interviews to civil protection and emergency management experts conducted by each partner

Summary and sorting by cross-sectoral components of risk management

* * * * * * * * Funded by European Union Humanitarian Aid and Civil Protection

Methodology -2nd step

- ► Sort the identified needs by risk
- ► Choose the priority needs by risk
- ► Link to mitigation measures
- ► Cross-risk analysis

Interviews

Country	Partner/s	Risk analysis developed within RECIPE	N° of interviews
Germany	FVA	Storms	6
Austria	BWF	Landslides and rockfalls	11
Italy	CIMA	Forest fires and floods	17
Spain	PCF, DGPC CAT, ICGC, CTFC	Forest fires and avalanches	9
Portugal	ISA	Forest fires	5
			49

Conclusions

cross-sectoral components of risk management	Number of identified needs/improvements after sorting
Emergency management and response capacity	14
Risk assessment, mapping, and planning tools	9
Technical measures	8
Risk culture and communication	6
Risk governance and policy	6
Recovery	1

Risk governance and policy

Political and financial support

Long-term investments in DRR strategies.

Civil Protection in urban planning

Management of tourist flows

Promote integrated risk management approaches

Private actors into DRR and mitigation actions.

Risk assessment, mapping, and planning tools

More resources and staff

More support to the local scale

Include the effect of climate change

Include assessment and monitoring

More resolution of maps and analysis

Monitoring the results

Forecast all hazards and damage

Develop and promote early warning systems

Include cascade effects and extreme events

Emergency management and response capacity

Faster response

Standard procedures

Cost-efficiency criteria.

Coordination and cooperation

Clearer responsibilities

Efficient resources management - sharing strategies

Increase efficiency in decision making

Increase practical training

Drills

Tools for a global knowledge of the event evolution

Access to trustable positioned data bases

Efficiency in communication processes

Data exchange (reusable formats, standardization of formats...)

Study the overload of the emergency services

Technical measures

Data management and visualization tools

Integrated platforms

Information discrimination and summarizing tools

Monitoring tools to diagnose the evolution of the event

New tools and support the current

Develop and promote DSS

Reliability of communication and power supply systems

Real time communication tools

Risk culture and communication

Tackle discredit mechanisms

Enhance participation of population in planning

Communicate the population exposition and self-protection

Self-responsibility and resilience

Communication tools with population during the emergency.

Synergies with the private partners

Risk culture and communication

Lessons learned protocols during the after-event stage

Needs & improvements: by risk

STORMS

Include the effect of climate change

More resolution of maps and analysis

Coordination and cooperation

Improve efficiency in communication processes

Communicate the population exposition and self-protection

AVALANCHES

Civil Protection in urban planning

Include cascade effects and extreme events

Increase Practical Training

Develop new tools and support the current ones

Communicate the population exposition and self-protection

FLOODS

Management of tourist flows

More support to the local scale

Coordination and cooperation

Integrated platforms

Participation of population in planning

LANDSLIDES AND ROCKFALLS

Civil Protection in urban planning

Better weather forecast and early warning systems

Clear responsibilities and competences

Self-responsibility and personal initiative

Adequate resources

WILDFIRES

Participation of population in planning

Include the effect of climate change

Civil Protection in urban planning

Promote self-responsibility and resilience

Improvement of communication systems

GLOBAL VIEW OF CIVIL PROTECTION

Civil Protection in urban planning

More support to the local scale

Faster response of the emergency management

Integrated platforms

Communicate the population exposition and self-protection

Cross-risk analysis: more identified

Coordination and cooperation

Communication with population about exposition and self-protection

Civil Protection urban planning

Lessons learned protocols during the after-event stage

Include cascade effects and extreme events

Early warning systems

More resources and staff

Positioned data bases

Self-responsibility and resilience

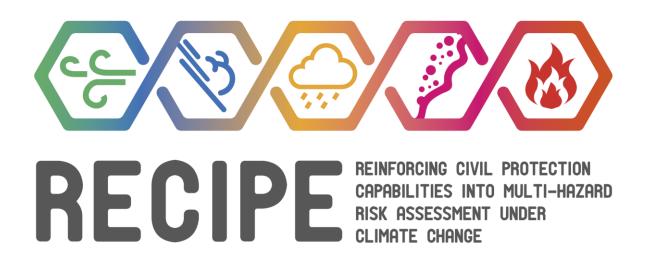
Efficient communication tools with population during the emergency

Make use of synergies with the private partners.

Standard procedures

More political and financial support to the risk management

Cross-risk analysis: most critical


Coordination and cooperation

Communicate the population exposition and self-protection

More resolution of maps and analysis

Enhance the participation of population in planning

Civil Protection in urban planning

and Civil Protection

Thank you!

